4,185 research outputs found

    General Relativistic Radiative Transfer

    Get PDF
    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres

    Rigid open-cell polyurethane foam for cryogenic insulation

    Get PDF
    Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields

    Mitigating the effects of omission errors on area and area change estimates

    Get PDF
    Information on Earth's land surface and change over time has never been easier to obtain, but making informed decisions to manage land well necessitates that this information is accurate and precise. In recent years, due largely to the inevitability of classification errors in remote sensing-based maps and the marked effects of these errors on subsequent area estimates, sample-based area estimates of land cover and land change have increased in importance and use. Area estimation of land cover and change by sampling is often made more efficient by a priori knowledge of the study area to be analyzed (e.g., stratification). Satellite data, obtained free of cost for virtually all of Earth's land surface, provide an excellent source for constructing landscape stratifications in the form of maps. Errors of omission, defined as sample units observed as land change but mapped as a stable class, may introduce considerable uncertainty in parameter estimates obtained from the sample data (e.g., area estimates of land change). The effects of omission errors are exacerbated in situations where the area of intact forest is large relative to the area of forest change, a common situation in countries that seek results-based payments for reductions in deforestation and associated carbon emissions. The presence of omission errors in such situations can preclude the acquisition of statistically valid evidence of a reduction in deforestation, and thus prevent payments. International donors and countries concerned with mitigating the effects of climate change are looking for guidance on how to reduce the effects of omission errors on area estimates of land change. This article presents the underlying reasons for the effects of omission errors on area estimates, case studies highlighting real-world examples of these effects, and proposes potential solutions. Practicable approaches to efficiently splitting large stable strata are presented that may reduce the effects of omission errors and immediately improve the quality of estimates. However, more research is needed before further recommendations can be provided on how to contain, mitigate and potentially eliminate the effects of omissions errors. © 2019 Elsevier Inc.This research was funded by support from the NASA Carbon Monitoring System ( NNX16AP26G ) and USGS/SilvaCarbon to Boston University (PI Pontus Olofsson). M.J. Sanz was supported by the Spanish Government through María de Maeztu excellence accreditation MDM-2017-0714

    Traversable Wormholes in Geometries of Charged Shells

    Get PDF
    We construct a static axisymmetric wormhole from the gravitational field of two charged shells which are kept in equilibrium by their electromagnetic repulsion. For large separations the exterior tends to the Majumdar-Papapetrou spacetime of two charged particles. The interior of the wormhole is a Reissner-Nordstr\"om black hole matching to the two shells. The wormhole is traversable and connects to the same asymptotics without violation of energy conditions. However, every point in the Majumdar-Papapetrou region lies on a closed timelike curve.Comment: 9 pages, LaTeX, 1 figur

    Inference with interference between units in an fMRI experiment of motor inhibition

    Full text link
    An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package cin (Causal Inference for Neuroscience) implementing the proposed method is freely available on CRAN at https://CRAN.R-project.org/package=ci

    Generalized Vaidya Solutions

    Get PDF
    A large family of solutions, representing, in general, spherically symmetric Type II fluid, is presented, which includes most of the known solutions to the Einstein field equations, such as, the monopole-de Sitter-charged Vaidya ones.Comment: Gen. Relativ. Grav. 31 (1), 107-114 (1999

    Bulk gravitons from a cosmological brane

    Full text link
    We investigate the emission of gravitons by a cosmological brane into an Anti de Sitter five-dimensional bulk spacetime. We focus on the distribution of gravitons in the bulk and the associated production of `dark radiation' in this process. In order to evaluate precisely the amount of dark radiation in the late low-energy regime, corresponding to standard cosmology, we study numerically the emission, propagation and bouncing off the brane of bulk gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio

    Age truncation and portfolio effects in Puget Sound Pacific herring

    Get PDF
    Forage fish undergo dramatic changes in abundance through time. Long-term fluctuations, which have historically been attributed to changes in recruitment, may also be due to changes in adult mortality. Pacific herring, a lightly exploited forage fish in Puget Sound, WA, have exhibited shifts in age structure and decreases in spawning biomass during the past 30 years. Here, we investigate changes in adult mortality as a potential explanation for these shifts. Using a hierarchical, age-structured population model, we indicate that adult natural mortality for Puget Sound Pacific herring has increased since 1973. We find that natural mortality has increased for every age class of adult (age 3+), especially age 4 fish, whose estimated mortality has doubled over the survey time period (from M=0.84 to M=1.76). We demonstrate that long-term shifts in mortality explain changes in age structure, and may explain biomass declines and failure to reach management thresholds for some spawning sites in Puget Sound. Temporal shifts in natural adult mortality could have negative implications for herring and herring predators. For predators, these implications include a reduction in the stability of the herring resource

    Cosmology of a brane radiating gravitons into the extra dimension

    Full text link
    We study in a self-consistent way the impact of the emission of bulk gravitons on the (homogeneous) cosmology of a three-brane embedded in a five-dimensional spacetime. In the low energy regime, we recover the well known result that the bulk affects the Friedmann equation only via a radiation-like term \C/a^4, called dark or Weyl radiation. By contrast, in the high energy regime, we find that the Weyl parameter \C is no longer constant but instead grows very rapidly as \C\propto a^4. As a consequence, the value of \C today is not a free parameter as usually considered but is a fixed number, which, generically, depends only on the number of relativistic degrees of freedom at the high/low energy transition. Our estimated amount of Weyl radiation satisfies the present nucleosynthesis bounds.Comment: 12 page
    corecore